Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5861, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467767

RESUMO

There has been an upward trend in the incidence of glioma, with high recurrence and high mortality. The beta subunits of the 20S proteasome are encoded by the proteasome beta (PSMB) genes and may affect the proteasome's function in glioma, assembly and inhibitor binding. This study attempted to reveal the function of the proliferation and invasion of glioma cells, which is affected by proteasome 20S subunit beta 2 (PSMB2). We subjected the data downloaded from the TCGA database to ROC, survival, and enrichment analyses. After establishing the stable PSMB2 knockdown glioma cell line. We detect the changes in the proliferation, invasion and migration of glioma cells by plate colony formation assay, transwell assay, wound healing assay and flow cytometry and PSMB2 expression was verified by quantitative PCR and Western blotting to identify the mRNA and protein levels. PSMB2 expression was higher in glioma tissues, and its expression positively correlated with poor prognosis and high tumor grade and after PSMB2 knockdown, the proliferation, invasion and migration of glioma cells were weakened.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/patologia , Complexo de Endopeptidases do Proteassoma/genética , Proliferação de Células/genética , Glioma/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Microambiente Tumoral/genética
2.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299379

RESUMO

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Assuntos
Quitina , Flores , Hypocreales , Oryza , Doenças das Plantas , Oryza/microbiologia , Oryza/metabolismo , Oryza/genética , Doenças das Plantas/microbiologia , Quitina/metabolismo , Flores/microbiologia , Hypocreales/patogenicidade , Hypocreales/genética , Hypocreales/metabolismo , Transdução de Sinais , Interações Hospedeiro-Patógeno , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulência , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
3.
Rice (N Y) ; 17(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170415

RESUMO

Reactive oxygen species (ROS) act as a group of signaling molecules in rice functioning in regulation of development and stress responses. Respiratory burst oxidase homologues (Rbohs) are key enzymes in generation of ROS. However, the role of the nine Rboh family members was not fully understood in rice multiple disease resistance and yield traits. In this study, we constructed mutants of each Rboh genes and detected their requirement in rice multiple disease resistance and yield traits. Our results revealed that mutations of five Rboh genes (RbohA, RbohB, RbohE, RbohH, and RbohI) lead to compromised rice blast disease resistance in a disease nursery and lab conditions; mutations of five Rbohs (RbohA, RbohB, RbohC, RbohE, and RbohH) result in suppressed rice sheath blight resistance in a disease nursery and lab conditions; mutations of six Rbohs (RbohA, RbohB, RbohC, RbohE, RbohH and RbohI) lead to decreased rice leaf blight resistance in a paddy yard and ROS production induced by PAMPs and pathogen. Moreover, all Rboh genes participate in the regulation of rice yield traits, for all rboh mutants display one or more compromised yield traits, such as panicle number, grain number per panicle, seed setting rate, and grain weight, resulting in reduced yield per plant except rbohb and rbohf. Our results identified the Rboh family members involved in the regulation of rice resistance against multiple pathogens that caused the most serious diseases worldwide and provide theoretical supporting for breeding application of these Rbohs to coordinate rice disease resistance and yield traits.

4.
Mol Plant ; 15(11): 1790-1806, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36245122

RESUMO

Grain formation is fundamental for crop yield but is vulnerable to abiotic and biotic stresses. Rice grain production is threatened by the false smut fungus Ustilaginoidea virens, which specifically infects rice floral organs, disrupting fertilization and seed formation. However, little is known about the molecular mechanisms of the U. virens-rice interaction and the genetic basis of floral resistance. Here, we report that U. virens secretes a cytoplasmic effector, UvCBP1, to facilitate infection of rice flowers. Mechanistically, UvCBP1 interacts with the rice scaffold protein OsRACK1A and competes its interaction with the reduced nicotinamide adenine dinucleotide phosphate oxidase OsRBOHB, leading to inhibition of reactive oxygen species (ROS) production. Although the analysis of natural variation revealed no OsRACK1A variants that could avoid being targeted by UvCBP1, expression levels of OsRACK1A are correlated with field resistance against U. virens in rice germplasm. Overproduction of OsRACK1A restores the OsRACK1A-OsRBOHB association and promotes OsRBOHB phosphorylation to enhance ROS production, conferring rice floral resistance to U. virens without yield penalty. Taken together, our findings reveal a new pathogenic mechanism mediated by an essential effector from a flower-specific pathogen and provide a valuable genetic resource for balancing disease resistance and crop yield.


Assuntos
Oryza , Oryza/genética , Oryza/microbiologia , Espécies Reativas de Oxigênio , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Flores/genética , Flores/microbiologia , Sementes
5.
Front Plant Sci ; 13: 788876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498644

RESUMO

Magnaporthe oryzae is the causative agent of rice blast, a devastating disease in rice worldwide. Based on the gene-for-gene paradigm, resistance (R) proteins can recognize their cognate avirulence (AVR) effectors to activate effector-triggered immunity. AVR genes have been demonstrated to evolve rapidly, leading to breakdown of the cognate resistance genes. Therefore, understanding the variation of AVR genes is essential to the deployment of resistant cultivars harboring the cognate R genes. In this study, we analyzed the nucleotide sequence polymorphisms of eight known AVR genes, namely, AVR-Pita1, AVR-Pii, AVR-Pia, AVR-Pik, AVR-Pizt, AVR-Pi9, AVR-Pib, and AVR-Pi54 in a total of 383 isolates from 13 prefectures in the Sichuan Basin. We detected the presence of AVR-Pik, AVR-Pi54, AVR-Pizt, AVR-Pi9, and AVR-Pib in the isolates of all the prefectures, but not AVR-Pita1, AVR-Pii, and AVR-Pia in at least seven prefectures, indicating loss of the three AVRs. We also detected insertions of Pot3, Mg-SINE, and indels in AVR-Pib, solo-LTR of Inago2 in AVR-Pizt, and gene duplications in AVR-Pik. Consistently, the isolates that did not harboring AVR-Pia were virulent to IRBLa-A, the monogenic line containing Pia, and the isolates with variants of AVR-Pib and AVR-Pizt were virulent to IRBLb-B and IRBLzt-t, the monogenic lines harboring Pib and Piz-t, respectively, indicating breakdown of resistance by the loss and variations of the avirulence genes. Therefore, the use of blast resistance genes should be alarmed by the loss and nature variations of avirulence genes in the blast fungal population in the Sichuan Basin.

6.
Ecotoxicol Environ Saf ; 238: 113575, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35500402

RESUMO

Sogatella furcifera is one of the main agricultural pests in many Asian countries, bringing about enormous injury. A triflumezopyrim-resistant (Tri) strain of S. furcifera was established through continuous screening in laboratory. The determination of synergist and enzyme activity indicated that P450s, especially for the upregulation expression of CYPSF01, played a key role in the increased resistance, confirmed by RNAi, and the recombinant protein of CYPSF01 and NADPH-P450 reductase was able to degrade triflumezopyrim. CYPSF01 had an obviously co-expression relationship with nuclear receptor ultraspiracle (USP), which were all significantly up-regulated when exposed to triflumezopyrim. Further, a USP-binding motif MA0534.1 was enriched from the upregulated peaks by Assay for Transposase Accessible Chromatin (ATAC-seq) analysis, which exited in the peaks located on the promoter of CYPSF01; the yeast one-hybrid experiments confirmed that USP could bind to the CYPSF01 promoter. And the USP interference significantly down-regulated CYPSF01 expression, and resulted in the significantly increasing sensitivity to triflumezopyrim, its mortality rate increased 28.37%. Therefore, the overexpression of USP could cause to the overexpression of CYPSF01, ultimately resulting in the resistance to triflumezopyrim in S. furcifera.


Assuntos
Hemípteros , Inseticidas , Animais , Hemípteros/metabolismo , Inseticidas/metabolismo , Piridinas/metabolismo , Pirimidinonas , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
7.
Omega (Westport) ; : 302228221083067, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35341382

RESUMO

Wuhan was the first large city where the initial breakout of COVID-19 took numerous lives. A group of social workers and mental health specialists coordinated the "Be Together Program" (BTP), a psychosocial grief intervention program to help a group of Wuhan COVID-19 bereaved people. Under the Dual-process model framework, BTP used the internet and social media as the main tools, combined with group and individual intervention. Additionally, it employed a "Supermarket Mode" with abundant intervention themes and approaches for BTP participants to choose according to their special needs. Additionally, Chinese cultural elements are integrated into the program. At the end of the program, the grief scores of participants in the qualified sample reduced significantly, and the prevalence of the potential Prolonged Grief Disorder diagnosis reduced from 75% to 12%. The study also found that the BTP was especially effective for those who had high levels of grief reaction.

8.
Plant J ; 110(1): 166-178, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997660

RESUMO

Many rice microRNAs have been identified as fine-tuning factors in the regulation of agronomic traits and immunity. Among them, Osa-miR535 targets SQUAMOSA promoter binding protein-like 14 (OsSPL14) to positively regulate tillers but negatively regulate yield and immunity. Here, we uncovered that Osa-miR535 targets another SPL gene, OsSPL4, to suppress rice immunity against Magnaporthe oryzae. Overexpression of Osa-miR535 significantly decreased the accumulation of the fusion protein SPL4TBS -YFP that contains the target site of Osa-miR535 in OsSPL4. Consistently, Osa-miR535 mediated the cleavage of OsSPL4 mRNA between the 10th and 11th base pair of the predicted binding site at the 3' untranslated region. Transgenic rice lines overexpressing OsSPL4 (OXSPL4) displayed enhanced blast disease resistance accompanied by enhanced immune responses, including increased expression of defense-relative genes and up-accumulated H2 O2 . By contrast, the knockout mutant osspl4 exhibited susceptibility. Moreover, OsSPL4 binds to the promoter of GH3.2, an indole-3-acetic acid-amido synthetase, and promotes its expression. Together, these data indicate that Os-miR535 targets OsSPL4 and OsSPL4-GH3.2, which may parallel the OsSPL14-WRKY45 module in rice blast disease resistance.


Assuntos
Magnaporthe , Oryza , Proteínas de Transporte/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Magnaporthe/metabolismo , Oryza/metabolismo , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Front Genet ; 13: 1053263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712869

RESUMO

Background: Glioma is the most common primary tumor of the central nervous system. The conventional glioma treatment strategies include surgical excision and chemo- and radiation-therapy. Interferon Gamma (IFN-γ) is a soluble dimer cytokine involved in immune escape of gliomas. In this study, we sought to identify IFN-γ-related genes to construct a glioma prognostic model to guide its clinical treatment. Methods: RNA sequences and clinicopathological data were downloaded from The Cancer Genome Atlas (TCGA) and the China Glioma Genome Atlas (CGGA). Using univariate Cox analysis and the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm, IFN-γ-related prognostic genes were selected to construct a risk scoring model, and analyze its correlation with the clinical features. A high-precision nomogram was drawn to predict prognosis, and its performance was evaluated using calibration curve. Finally, immune cell infiltration and immune checkpoint molecule expression were analyzed to explore the tumor microenvironment characteristics associated with the risk scoring model. Results: Four out of 198 IFN-γ-related genes were selected to construct a risk score model with good predictive performance. The expression of four IFN-γ-related genes in glioma tissues was significantly increased compared to normal brain tissue (p < 0.001). Based on ROC analysis, the risk score model accurately predicted the overall survival rate of glioma patients at 1 year (AUC: The Cancer Genome Atlas 0.89, CGGA 0.59), 3 years (AUC: TCGA 0.89, CGGA 0.68), and 5 years (AUC: TCGA 0.88, CGGA 0.70). Kaplan-Meier analysis showed that the overall survival rate of the high-risk group was significantly lower than that of the low-risk group (p < 0.0001). Moreover, high-risk scores were associated with wild-type IDH1, wild-type ATRX, and 1P/19Q non-co-deletion. The nomogram predicted the survival rate of glioma patients based on the risk score and multiple clinicopathological factors such as age, sex, pathological grade, and IDH Status, among others. Risk score and infiltrating immune cells including CD8 T-cell, resting CD4 memory T-cell, regulatory T-cell (Tregs), M2 macrophages, resting NK cells, activated mast cells, and neutrophils were positively correlated (p < 0.05). In addition, risk scores closely associated with expression of immune checkpoint molecules such as PD-1, PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, CD48, CD226, and CD96. Conclusion: Our risk score model reveals that IFN-γ -associated genes are an independent prognostic factor for predicting overall survival in glioma, which is closely associated with immune cell infiltration and immune checkpoint molecule expression. This model will be helpful in predicting the effectiveness of immunotherapy and survival rate in patients with glioma.

10.
Biology (Basel) ; 10(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34440027

RESUMO

The white-back planthopper (WBPH), Sogatella furcifera, mainly harms rice and occurs in most rice regions in China and Asia. With the use of chemical pesticides, S. furcifera has developed varying degrees of resistance to a variety of pesticides. In our study, a chlorpyrifos-resistant population (44.25-fold) was built through six generations of screening with a sublethal dose of chlorpyrifos (LD50) from a field population. The expression levels of ten selected resistance-related P450 genes were analyzed by RT-qPCR and found that CYP408A3 and CYP6CS3 were significantly more expressed in the third instar nymphs of the XY17-G5 and XY17-G6 populations, about 25-fold more than the Sus-Lab strain, respectively (p < 0.01). To elucidate their molecular function in the development of resistance towards chlorpyrifos, we cloned two P450 full lengths and predicted their tertiary protein structures. CYP408A3 and CYP6CS3 were also downregulated after injecting dsCYP408A3, dsCYP6CS3, or their mixture compared to the control group. Moreover, the mortality rates of the dsCYP6CS3 (91.7%) and the mixture injection treatment (93.3%) treated by the LC50 concentration of chlorpyrifos were significantly higher than the blank control group (51.7%) and dsCYP408A3 injection treatment (69.3%) at 72 h (p < 0.01). Meanwhile, the P450 enzyme activities in the dsRNA treatments were lower than that in the control (XY17-G6) (p < 0.01). Therefore, the P450 gene CYP6CS3 may be one of the main genes in the development of chlorpyrifos resistance in S. furcifera.

11.
Rice (N Y) ; 13(1): 38, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32524307

RESUMO

MicroRNAs (miRNAs) play essential roles in rice immunity against Magnaporthe oryzae, the causative agent of rice blast disease. Here we demonstrate that Osa-miR162a fine-tunes rice immunity against M. oryzae and yield traits. Overexpression of Osa-miR162a enhances rice resistance to M. oryzae accompanying enhanced induction of defense-related genes and accumulation of hydrogen peroxide (H2O2). In contrast, blocking Osa-miR162 by overexpressing a target mimic of Osa-miR162a enhances susceptibility to blast fungus associating with compromised induction of defense-related gene expression and H2O2 accumulation. Moreover, the transgenic lines overexpressing Osa-miR162a display decreased seed setting rate resulting in slight reduced yield per plant, whereas the transgenic lines blocking Osa-miR162 show an increased number of grains per panicle, resulting in increased yield per plant. Altered accumulation of Osa-miR162 had a limited impact on the expression of rice Dicer-like 1 (OsDCL1) in these transgenic lines showing normal gross morphology, and silencing of OsDCL1 led to enhanced resistance to blast fungus similar to that caused by overexpression of Osa-miR162a, suggesting the involvement of OsDCL1 in Osa-miR162a-regulated resistance. Together, our results indicate that Osa-miR162a is involved in rice immunity against M. oryzae and fine-tunes resistance and yield.

12.
Artigo em Chinês | MEDLINE | ID: mdl-23259292

RESUMO

OBJECTIVE: The purpose is to report a calcification of the cartilaginous of the tracheobronchial case in child, and to recognize the clinical and imaging features on Keutel syndrome. METHOD: A comprehensive analysis of the clinical data and X-ray,CT. Some literatures involving some symptoms of this child were reviewed. RESULT: This patient diagnosed with Keutel syndrome finally. CONCLUSION: When we meet calcification of the cartilaginous of the tracheobronchial patient in clinic, it may be Keutel syndrome.


Assuntos
Anormalidades Múltiplas/patologia , Calcinose/patologia , Doenças das Cartilagens/patologia , Deformidades Congênitas da Mão/patologia , Estenose da Valva Pulmonar/patologia , Anormalidades Múltiplas/diagnóstico , Calcinose/diagnóstico , Doenças das Cartilagens/diagnóstico , Deformidades Congênitas da Mão/diagnóstico , Humanos , Lactente , Masculino , Estenose da Valva Pulmonar/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...